Code split, added default and clock ISR, proper 8259 PIC and CMOS RTC config, accepting interrupts

This commit is contained in:
Maciej Krzyżanowski 2023-11-23 14:21:09 +01:00
parent 7d113cf5db
commit ccd3538d1f
5 changed files with 788 additions and 407 deletions

85
boot.s
View File

@ -33,15 +33,96 @@
.global stack_bottom .global stack_bottom
stack_bottom: stack_bottom:
/* Stos o wielkości 16 KB */ /* Stos o wielkości 16 KB */
.skip 16384 .skip 65536
stack_top: stack_top:
.section .data .section .data
int_count: .int 0x0
clock_count: .int 0x0
clock_pos: .int 0x0
/* /*
Oznaczenie startu, tu zaczyna się kod kernela! Oznaczenie startu, tu zaczyna się kod kernela!
*/ */
.section .text .section .text
.global default_isr
.type default_isr, @function
default_isr:
cli
push %eax
mov $0x0F41, %eax
add int_count, %eax
mov %ax, 0xb8000
incl int_count
cmpl $0x5, int_count
jne end
movl $0x0, int_count
end:
xchg %bx, %bx
mov $0x20, %al
outb %al, $0x20
mov $0x20, %al
outb %al, $0xA0
pop %eax
sti
iretl
.global clock_isr
.type clock_isr, @function
clock_isr:
cli
push %eax
//xchg %bx, %bx
mov $0x0F41, %ax
add clock_count, %ax
mov clock_pos, %edx
shl $1, %edx
add $0xb8002, %edx
movw %ax, (%edx)
incl clock_count
cmpl $0x1F, clock_count
jne end2
movl $0x0, clock_count
end2:
incl clock_pos
cmpl $0x7CF, clock_pos
jne end3
movl $0x0, clock_pos
end3:
//xchg %bx, %bx
mov $0x0c, %al
outb %al, $0x70
inb $0x71
mov $0x20, %al
outb %al, $0x20
mov $0x20, %al
outb %al, $0xA0
// EOI
pop %eax
sti
iretl
.global _start .global _start
.type _start, @function .type _start, @function
_start: _start:
@ -52,7 +133,7 @@ mov $stack_top, %esp
call kernel_main call kernel_main
/* Wieczne oczekiwanie po zakończeniu kodu kernela */ /* Wieczne oczekiwanie po zakończeniu kodu kernela */
cli // cli
1: hlt 1: hlt
/* Skacze do (lokalnej) labelki o nazwie 1, wstecz */ /* Skacze do (lokalnej) labelki o nazwie 1, wstecz */
jmp 1b jmp 1b

167
gdt.h Normal file
View File

@ -0,0 +1,167 @@
#pragma once
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
#include "print.h"
#define KERNEL_SEGMENT 0
#define USER_SEGMENT 1
#define CODE_SEGMENT 0
#define DATA_SEGMENT 1
struct gdt_entry {
size_t base;
size_t limit;
bool is_present;
int permission_level;
int segment_type;
bool is_executable;
int direction_conforming;
int readable_writable;
bool was_accessed;
int granularity;
int segment_mode;
bool is_long_mode;
};
struct gdt_entry gdt_entry_create(size_t start_address, size_t pages_size,
int kernel_or_user, int code_or_data)
{
struct gdt_entry new_entry;
new_entry.base = start_address;
new_entry.limit = pages_size - 1;
new_entry.is_present = true;
if (kernel_or_user == KERNEL_SEGMENT)
{
new_entry.permission_level = 0;
}
else
{
new_entry.permission_level = 3;
}
new_entry.segment_type = 1;
new_entry.is_executable = (code_or_data == CODE_SEGMENT);
new_entry.direction_conforming = 0;
if (code_or_data == CODE_SEGMENT)
{
new_entry.readable_writable = 0;
}
else
{
new_entry.readable_writable = 1;
}
new_entry.was_accessed = false;
new_entry.granularity = 1;
new_entry.segment_mode = 1;
new_entry.is_long_mode = false;
return new_entry;
}
// BB F L AA BBBBBB LLLL
// AA = P DPL(2) S E DC RW A
// F = G DB L -
uint64_t gdt_entry_encode(struct gdt_entry entry)
{
entry.base = entry.base << 12;
uint64_t gdt_encoded = 0;
// Insert base
gdt_encoded |= ((((uint64_t) entry.base) & 0xFF000000) << 32);
gdt_encoded |= ((((uint64_t) entry.base) & 0x00FFFFFF) << 16);
// Insert limit
gdt_encoded |= ((uint64_t) (entry.limit & 0xF0000) << 32);
gdt_encoded |= (entry.limit & 0x0FFFF);
// Prepare flags
uint64_t flags = 0;
flags |= (entry.granularity << 3);
flags |= (entry.segment_mode << 2);
flags |= (entry.is_long_mode << 1);
// Insert flags
gdt_encoded |= (flags << 52);
// Prepare access byte
uint64_t access_byte = 0;
access_byte |= (entry.is_present << 7);
access_byte |= (entry.permission_level << 5);
access_byte |= (entry.segment_type << 4);
access_byte |= (entry.is_executable << 3);
access_byte |= (entry.direction_conforming << 2);
access_byte |= (entry.readable_writable << 1);
access_byte |= entry.was_accessed;
// Insert access byte
gdt_encoded |= (access_byte << 40);
return gdt_encoded;
}
struct __attribute__((__packed__)) gdt_table
{
uint16_t size_in_bytes_m1;
uint64_t *dest_pointer;
struct gdt_entry entries[16];
};
void apply_gdt_table(struct gdt_table table)
{
// Null entry added implicitly
uint64_t null_entry_encoded = 0;
*table.dest_pointer = null_entry_encoded;
int entries_count = (table.size_in_bytes_m1 + 1) / 8;
for (int i = 0; i < entries_count; i++)
{
uint64_t entry_encoded = gdt_entry_encode(table.entries[i]);
uint64_t *dest_address = table.dest_pointer + i + 1;
*dest_address = entry_encoded;
}
__asm__("lgdt (%0)": :"r"(&table));
}
void gdt_setup()
{
struct gdt_entry kernel_code_entry =
gdt_entry_create(0x0, 0x100000, KERNEL_SEGMENT, CODE_SEGMENT);
struct gdt_entry kernel_data_entry =
gdt_entry_create(0x0, 0x100000, KERNEL_SEGMENT, DATA_SEGMENT);
struct gdt_entry user_code_entry =
gdt_entry_create(0x0, 0x100000, USER_SEGMENT, CODE_SEGMENT);
struct gdt_entry user_data_entry =
gdt_entry_create(0x0, 0x100000, USER_SEGMENT, DATA_SEGMENT);
struct gdt_table gdt_table;
gdt_table.size_in_bytes_m1 = 5 * 8 - 1;
gdt_table.dest_pointer = (uint64_t *) 0x400000;
gdt_table.entries[0] = kernel_code_entry;
gdt_table.entries[1] = kernel_data_entry;
gdt_table.entries[2] = user_code_entry;
gdt_table.entries[3] = user_data_entry;
apply_gdt_table(gdt_table);
terminal_writestring("GDT table applied\n");
void (*gdt_setup_ptr)() = gdt_setup;
terminal_writenumpad((uintptr_t)gdt_setup_ptr, 16, 16);
__asm__ volatile ("mov $0x10, %ax;"
"mov %ax, %ds;"
"mov %ax, %es;"
"mov %ax, %fs;"
"mov %ax, %gs;"
"mov %ax, %ss;" "jmp $0x08,$csrefresh;");
__asm__ volatile ("csrefresh:");
}

122
idt.h Normal file
View File

@ -0,0 +1,122 @@
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include "print.h"
// Interrupt Gate Entry
struct idt_int_gate
{
uint32_t offset;
uint16_t segment_selector;
bool is_present;
int permission_level;
bool is_32_bit;
};
struct idt_int_gate idt_int_gate_create(
uint16_t segment_selector,
uint32_t offset)
{
struct idt_int_gate new_gate;
new_gate.segment_selector = segment_selector;
new_gate.offset = offset;
new_gate.is_present = true;
new_gate.permission_level = 0;
new_gate.is_32_bit = true;
return new_gate;
}
uint64_t idt_int_gate_encode(struct idt_int_gate gate)
{
uint64_t gate_encoded = 0;
// Insert offset
gate_encoded |= ((((uint64_t) gate.offset) & 0xFFFF0000) << 32);
gate_encoded |= ((((uint64_t) gate.offset) & 0x0000FFFF));
// Insert segment selector
gate_encoded |= ((((uint64_t) gate.segment_selector)) << 16);
// Insert P(resent) bit
gate_encoded |= ((((uint64_t) gate.is_present)) << 47);
// Inesrt DPL
gate_encoded |= ((((uint64_t) gate.permission_level)) << 45);
// Insert D (size of gate)
gate_encoded |= ((((uint64_t) gate.is_32_bit)) << 43);
// Insert some magic bits
uint8_t magic_bits = 0x30;
gate_encoded |= ((((uint64_t) magic_bits)) << 37);
return gate_encoded;
}
struct __attribute__((__packed__)) idt_table
{
// Size in bytes minus one!
uint16_t size_in_bytes_m1;
uint64_t *dest_pointer;
struct idt_int_gate gates[256];
};
void apply_idt_table(struct idt_table table)
{
int entries_count = (table.size_in_bytes_m1 + 1) / 8;
for (int i = 0; i < entries_count; i++)
{
uint64_t entry_encoded = idt_int_gate_encode(table.gates[i]);
uint64_t *dest_address = table.dest_pointer + i;
*dest_address = entry_encoded;
}
__asm__("lidt (%0)": :"r"(&table));
}
void default_int_handler()
{
__asm__("iret");
}
void idt_setup()
{
uintptr_t default_isr_ptr;
__asm__("mov $default_isr, %%eax": : :"eax");
__asm__("mov %%eax, %0;": "=r"(default_isr_ptr):);
uintptr_t clock_isr_ptr;
__asm__ volatile("mov $clock_isr, %%eax;"
"mov %%eax, %0;"
:
"=r" (clock_isr_ptr)
:
:
"eax"
);
struct idt_table table;
table.size_in_bytes_m1 = 256 * 8 - 1;
table.dest_pointer = (uint64_t*)0x500000;
for (int i = 0; i < 256; i++)
{
struct idt_int_gate new_gate
= idt_int_gate_create(0x8, default_isr_ptr);
table.gates[i] = new_gate;
}
table.gates[0x70] = idt_int_gate_create(0x8, clock_isr_ptr);
apply_idt_table(table);
terminal_newline();
terminal_writenumpad(default_isr_ptr, 16, 16);
__asm__ volatile("sti");
}

560
kernel.c
View File

@ -1,432 +1,134 @@
#include <stdbool.h>
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
/* #include "gdt.h"
* Check if the compiler thinks you are targeting the wrong operating #include "print.h"
* system. #include "idt.h"
*/
#if defined(__linux__)
#error "You are not using a cross-compiler, you will most certainly run into trouble"
#endif
/* /* Taken from OSDEV WIKI */
* This tutorial will only work for the 32-bit ix86 targets. #define PIC1 0x20 /* IO base address for master PIC */
*/ #define PIC2 0xA0 /* IO base address for slave PIC */
#if !defined(__i386__) #define PIC1_COMMAND PIC1
#error "This tutorial needs to be compiled with a ix86-elf compiler" #define PIC1_DATA (PIC1+1)
#endif #define PIC2_COMMAND PIC2
#define PIC2_DATA (PIC2+1)
/* #define ICW1_ICW4 0x01 /* Indicates that ICW4 will be present */
* Hardware text mode color constants. #define ICW1_SINGLE 0x02 /* Single (cascade) mode */
*/ #define ICW1_INTERVAL4 0x04 /* Call address interval 4 (8) */
enum vga_color { #define ICW1_LEVEL 0x08 /* Level triggered (edge) mode */
VGA_COLOR_BLACK = 0, #define ICW1_INIT 0x10 /* Initialization - required! */
VGA_COLOR_BLUE = 1,
VGA_COLOR_GREEN = 2,
VGA_COLOR_CYAN = 3,
VGA_COLOR_RED = 4,
VGA_COLOR_MAGENTA = 5,
VGA_COLOR_BROWN = 6,
VGA_COLOR_LIGHT_GREY = 7,
VGA_COLOR_DARK_GREY = 8,
VGA_COLOR_LIGHT_BLUE = 9,
VGA_COLOR_LIGHT_GREEN = 10,
VGA_COLOR_LIGHT_CYAN = 11,
VGA_COLOR_LIGHT_RED = 12,
VGA_COLOR_LIGHT_MAGENTA = 13,
VGA_COLOR_LIGHT_BROWN = 14,
VGA_COLOR_WHITE = 15,
};
static inline uint8_t vga_entry_color(enum vga_color fg, enum vga_color bg) #define ICW4_8086 0x01 /* 8086/88 (MCS-80/85) mode */
#define ICW4_AUTO 0x02 /* Auto (normal) EOI */
#define ICW4_BUF_SLAVE 0x08 /* Buffered mode/slave */
#define ICW4_BUF_MASTER 0x0C /* Buffered mode/master */
#define ICW4_SFNM 0x10 /* Special fully nested (not) */
/* End of taken */
void breakpoint()
{ {
return fg | bg << 4; __asm__("xchg %bx, %bx");
} }
static inline uint16_t vga_entry(unsigned char uc, uint8_t color) void set_interrupts(bool enabled)
{ {
return (uint16_t) uc | (uint16_t) color << 8; if (enabled)
}
size_t strlen(const char *str)
{
size_t len = 0;
while (str[len])
len++;
return len;
}
static const size_t VGA_WIDTH = 80;
static const size_t VGA_HEIGHT = 25;
size_t terminal_row;
size_t terminal_column;
uint8_t terminal_color;
uint16_t *terminal_buffer;
void terminal_initialize(void)
{
terminal_row = 0;
terminal_column = 0;
terminal_color = vga_entry_color(VGA_COLOR_LIGHT_GREY, VGA_COLOR_BLACK);
terminal_buffer = (uint16_t *) 0xB8000;
for (size_t y = 0; y < VGA_HEIGHT; y++)
{ {
for (size_t x = 0; x < VGA_WIDTH; x++) __asm__ volatile("sti");
{
const size_t index = y * VGA_WIDTH + x;
terminal_buffer[index] = vga_entry(' ', terminal_color);
}
}
}
void terminal_setcolor(uint8_t color)
{
terminal_color = color;
}
void terminal_putentryat(char c, uint8_t color, size_t x, size_t y)
{
const size_t index = y * VGA_WIDTH + x;
terminal_buffer[index] = vga_entry(c, color);
}
void terminal_putchar(char c)
{
terminal_putentryat(c, terminal_color, terminal_column, terminal_row);
if (++terminal_column == VGA_WIDTH)
{
terminal_column = 0;
if (++terminal_row == VGA_HEIGHT)
{
terminal_row--;
// Fixed at last row now
// Now we need to move from second line to end to the start
for (size_t y = 1; y < VGA_HEIGHT; y++)
{
for (size_t x = 0; x < VGA_WIDTH; x++)
{
const size_t src_index =
y * VGA_WIDTH + x;
char toCopy =
terminal_buffer[src_index];
terminal_putentryat(toCopy,
terminal_color,
x, y - 1);
}
}
for (size_t x = 0; x < VGA_WIDTH; x++)
{
terminal_putentryat(' ', terminal_color,
x, VGA_HEIGHT - 1);
}
}
}
// Write branding
uint8_t prevColor = terminal_color;
terminal_color =
vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_MAGENTA);
terminal_putentryat('M', terminal_color, VGA_WIDTH - 4, 0);
terminal_color = vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_CYAN);
terminal_putentryat('K', terminal_color, VGA_WIDTH - 3, 0);
terminal_color = vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_BLUE);
terminal_putentryat('O', terminal_color, VGA_WIDTH - 2, 0);
terminal_color =
vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_GREEN);
terminal_putentryat('S', terminal_color, VGA_WIDTH - 1, 0);
terminal_color = prevColor;
}
void terminal_newline()
{
for (size_t x = terminal_column; x < VGA_WIDTH; x++)
{
terminal_putchar(' ');
}
}
void terminal_write(const char *data, size_t size)
{
for (size_t i = 0; i < size; i++)
{
if (data[i] == '\n')
{
terminal_newline();
}
else
{
terminal_putchar(data[i]);
}
}
}
// Pad length is what number length should be, including padding
void terminal_writenumpad(uint64_t number, int base, int pad_length)
{
char digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
int size = 0;
char numChars[32];
if (number == 0)
{
numChars[31] = '0';
size = 1;
} }
else else
{ {
while (number != 0) __asm__ volatile("cli");
{
uint64_t rest = number / base;
uint64_t digit = number % base;
numChars[31 - size++] = digits[digit];
number = rest;
}
} }
// Write pad_length - size of zeros
// If padding won't be needed (number is longer than pad_legnth)
// then loop won't run at all
while (pad_length > size)
{
numChars[31 - size++] = digits[0];
}
terminal_write(numChars + (32 - size), size);
} }
void terminal_writenum(uint64_t number, int base) void outb(uint8_t port_number, uint8_t new_value)
{ {
terminal_writenumpad(number, base, 0); __asm__ volatile(
"outb %[new_value], %[port_number]"
:
:
[port_number] "d" ((unsigned short)port_number),
[new_value] "a" (new_value)
);
} }
void terminal_writestring(const char *data) uint8_t inb(uint8_t port_number)
{ {
terminal_write(data, strlen(data)); uint8_t out_value;
}
void terminal_writegreeting()
{
terminal_writestring(" .-'''-. \n");
terminal_writestring
(" ' _ \\ \n");
terminal_writestring
(" __ __ ___ . / /` '. \\ \n");
terminal_writestring
("| |/ `.' `. .'| . | \\ ' \n");
terminal_writestring("| .-. .-. ' .' | | ' | ' \n");
terminal_writestring
("| | | | | |< | \\ \\ / / \n");
terminal_writestring("| | | | | | | | ____`. ` ..' / _ \n");
terminal_writestring
("| | | | | | | | \\ .' '-...-'`.' | \n");
terminal_writestring("| | | | | | | |/ . . | / \n");
terminal_writestring
("|__| |__| |__| | /\\ \\ .'.'| |// \n");
terminal_writestring
(" | | \\ \\ .'.'.-' / \n");
terminal_writestring
(" ' \\ \\ \\ .' \\_.' \n");
terminal_writestring(" '------' '---' \n");
}
struct gdt_entry {
size_t base;
size_t limit;
bool is_present;
int permission_level;
int segment_type;
bool is_executable;
int direction_conforming;
int readable_writable;
bool was_accessed;
int granularity;
int segment_mode;
bool is_long_mode;
};
#define KERNEL_SEGMENT 0
#define USER_SEGMENT 1
#define CODE_SEGMENT 0
#define DATA_SEGMENT 1
struct gdt_entry gdt_entry_create(size_t start_address, size_t pages_size,
int kernel_or_user, int code_or_data)
{
struct gdt_entry new_entry;
new_entry.base = start_address;
new_entry.limit = pages_size - 1;
new_entry.is_present = true;
if (kernel_or_user == KERNEL_SEGMENT)
{
new_entry.permission_level = 0;
}
else
{
new_entry.permission_level = 3;
}
new_entry.segment_type = 1;
new_entry.is_executable = (code_or_data == CODE_SEGMENT);
new_entry.direction_conforming = 0;
if (code_or_data == CODE_SEGMENT)
{
new_entry.readable_writable = 0;
}
else
{
new_entry.readable_writable = 1;
}
new_entry.was_accessed = false;
new_entry.granularity = 1;
new_entry.segment_mode = 1;
new_entry.is_long_mode = false;
return new_entry;
}
// BB F L AA BBBBBB LLLL
// AA = P DPL(2) S E DC RW A
// F = G DB L -
uint64_t gdt_entry_encode(struct gdt_entry entry)
{
entry.base = entry.base << 12;
uint64_t gdt_encoded = 0;
// Insert base
gdt_encoded |= ((((uint64_t) entry.base) & 0xFF000000) << 32);
gdt_encoded |= ((((uint64_t) entry.base) & 0x00FFFFFF) << 16);
// Insert limit
gdt_encoded |= ((uint64_t) (entry.limit & 0xF0000) << 32);
gdt_encoded |= (entry.limit & 0x0FFFF);
// Prepare flags
uint64_t flags = 0;
flags |= (entry.granularity << 3);
flags |= (entry.segment_mode << 2);
flags |= (entry.is_long_mode << 1);
// Insert flags
gdt_encoded |= (flags << 52);
// Prepare access byte
uint64_t access_byte = 0;
access_byte |= (entry.is_present << 7);
access_byte |= (entry.permission_level << 5);
access_byte |= (entry.segment_type << 4);
access_byte |= (entry.is_executable << 3);
access_byte |= (entry.direction_conforming << 2);
access_byte |= (entry.readable_writable << 1);
access_byte |= entry.was_accessed;
// Insert access byte
gdt_encoded |= (access_byte << 40);
return gdt_encoded;
}
struct __attribute__((__packed__)) gdt_table
{
uint16_t size_in_bytes;
uint64_t *dest_pointer;
struct gdt_entry entries[16];
};
void apply_table(struct gdt_table table)
{
// Null entry added implicitly
uint64_t null_entry_encoded = 0;
*table.dest_pointer = null_entry_encoded;
int entries_count = (table.size_in_bytes + 1) / 8;
for (int i = 0; i < entries_count; i++)
{
uint64_t entry_encoded = gdt_entry_encode(table.entries[i]);
uint64_t *dest_address = table.dest_pointer + i + 1;
*dest_address = entry_encoded;
}
__asm__("lgdt (%0)": :"r"(&table));
}
void print_texts()
{
terminal_writestring("TEGO NIE POWINNO BYC WIDAC\n");
terminal_writestring
("Witam i pozdrawiam, MK\nTest wielolinijkowosci\n");
for (size_t i = 0; i < VGA_HEIGHT - 3; i++)
{
for (size_t j = 0; j < i; j++)
{
terminal_writestring("*");
}
if (i != VGA_HEIGHT - 3)
terminal_writestring("\n");
}
terminal_newline();
terminal_writenum(123456789, 10);
terminal_newline();
terminal_writenum(189, 16);
terminal_newline();
terminal_writegreeting();
size_t start_point;
__asm__("mov $_start, %%eax": : :"eax");
__asm__("mov %%eax, %0;": "=r"(start_point):);
terminal_writestring("\n\nPoczatek kernela:\n");
terminal_writenum(start_point, 10);
terminal_newline();
size_t human_readable = start_point / (1024 * 1024);
terminal_writenum(human_readable, 10);
terminal_writestring(" MiB\n");
}
void gdt_setup()
{
struct gdt_entry kernel_code_entry =
gdt_entry_create(0x0, 0x100000, KERNEL_SEGMENT, CODE_SEGMENT);
struct gdt_entry kernel_data_entry =
gdt_entry_create(0x0, 0x100000, KERNEL_SEGMENT, DATA_SEGMENT);
struct gdt_entry user_code_entry =
gdt_entry_create(0x0, 0x100000, USER_SEGMENT, CODE_SEGMENT);
struct gdt_entry user_data_entry =
gdt_entry_create(0x0, 0x100000, USER_SEGMENT, DATA_SEGMENT);
struct gdt_table gdt_table;
gdt_table.size_in_bytes = 39;
gdt_table.dest_pointer = (uint64_t *) 0x400000;
gdt_table.entries[0] = kernel_code_entry;
gdt_table.entries[1] = kernel_data_entry;
gdt_table.entries[2] = user_code_entry;
gdt_table.entries[3] = user_data_entry;
apply_table(gdt_table);
terminal_writestring("GDT table applied\n");
__asm__ volatile( __asm__ volatile(
"mov $0x10, %ax;" "in %[port_number], %[out_value];"
"mov %ax, %ds;" :
"mov %ax, %es;" [out_value] "=a" (out_value)
"mov %ax, %fs;" :
"mov %ax, %gs;" [port_number] "d" ((unsigned short)port_number)
"mov %ax, %ss;"
"jmp $0x08,$csrefresh;"
); );
__asm__ volatile("csrefresh:"); return out_value;
}
static inline void io_wait(void)
{
outb(0x80, 0);
}
void PIC_remap(int offset1, int offset2)
{
unsigned char a1, a2;
a1 = inb(PIC1_DATA); // save masks
a2 = inb(PIC2_DATA);
outb(PIC1_COMMAND, ICW1_INIT | ICW1_ICW4); // starts the initialization sequence (in cascade mode)
io_wait();
outb(PIC2_COMMAND, ICW1_INIT | ICW1_ICW4);
io_wait();
outb(PIC1_DATA, offset1); // ICW2: Master PIC vector offset
io_wait();
outb(PIC2_DATA, offset2); // ICW2: Slave PIC vector offset
io_wait();
outb(PIC1_DATA, 4); // ICW3: tell Master PIC that there is a slave PIC at IRQ2 (0000 0100)
io_wait();
outb(PIC2_DATA, 2); // ICW3: tell Slave PIC its cascade identity (0000 0010)
io_wait();
outb(PIC1_DATA, ICW4_8086); // ICW4: have the PICs use 8086 mode (and not 8080 mode)
io_wait();
outb(PIC2_DATA, ICW4_8086);
io_wait();
outb(PIC1_DATA, a1); // restore saved masks.
outb(PIC2_DATA, a2);
}
uint8_t cmos_register_value(uint16_t register_number)
{
outb(0x70, register_number);
return inb(0x71);
}
void display_date()
{
uint8_t year = cmos_register_value(0x09);
uint8_t month = cmos_register_value(0x08);
uint8_t day = cmos_register_value(0x07);
uint8_t hours = cmos_register_value(0x04);
uint8_t minutes = cmos_register_value(0x02);
uint8_t seconds = cmos_register_value(0x00);
terminal_writenumpad(year, 10, 2);
terminal_writestring("-");
terminal_writenumpad(month, 10, 2);
terminal_writestring("-");
terminal_writenumpad(day, 10, 2);
terminal_writestring(" ");
terminal_writenumpad(hours, 10, 2);
terminal_writestring(":");
terminal_writenumpad(minutes, 10, 2);
terminal_writestring(":");
terminal_writenumpad(seconds, 10, 2);
} }
void kernel_main(void) void kernel_main(void)
@ -434,4 +136,54 @@ void kernel_main(void)
terminal_initialize(); terminal_initialize();
print_texts(); print_texts();
gdt_setup(); gdt_setup();
idt_setup();
PIC_remap(0x08, 0x70);
// Set RTC freq
uint8_t rate = 15;
rate &= 0x0F;
set_interrupts(false);
outb(0x70, 0x8A);
char prev = inb(0x71);
outb(0x70, 0x8A);
outb(0x71, (prev & 0xF0) | rate);
set_interrupts(true);
// Set up RTC periodic interrupts
set_interrupts(false);
outb(0x70, 0x8B);
prev = inb(0x71);
outb(0x70, 0x8B);
outb(0x71, prev | 0x44);
set_interrupts(true);
// Change to binary date format ^^
// Clear IRQ 8 mask
//outb(0xA1, inb(0xA1) & ~(1 << 0));
outb(0xA1, ~(1 << 0));
outb(0x21, ~(1 << 2));
uint8_t slave_mask = inb(0xA1);
terminal_newline();
terminal_writestring("Slave mask: \n");
terminal_writenumpad(slave_mask, 2, 8);
uint8_t master_mask = inb(0x21);
terminal_newline();
terminal_writestring("Master mask:\n");
terminal_writenumpad(master_mask, 2, 8);
outb(0x70, 0x0C);
unsigned short v = inb(0x71);
terminal_newline();
terminal_writenumpad(v, 16, 2);
terminal_newline();
terminal_writestring("PTR");
terminal_writenumpad((uintptr_t)&kernel_main, 16, 16);
terminal_newline();
display_date();
breakpoint();
} }

259
print.h Normal file
View File

@ -0,0 +1,259 @@
#pragma once
#include <stdint.h>
#include <stddef.h>
/*
* Hardware text mode color constants.
*/
enum vga_color {
VGA_COLOR_BLACK = 0,
VGA_COLOR_BLUE = 1,
VGA_COLOR_GREEN = 2,
VGA_COLOR_CYAN = 3,
VGA_COLOR_RED = 4,
VGA_COLOR_MAGENTA = 5,
VGA_COLOR_BROWN = 6,
VGA_COLOR_LIGHT_GREY = 7,
VGA_COLOR_DARK_GREY = 8,
VGA_COLOR_LIGHT_BLUE = 9,
VGA_COLOR_LIGHT_GREEN = 10,
VGA_COLOR_LIGHT_CYAN = 11,
VGA_COLOR_LIGHT_RED = 12,
VGA_COLOR_LIGHT_MAGENTA = 13,
VGA_COLOR_LIGHT_BROWN = 14,
VGA_COLOR_WHITE = 15,
};
static inline uint8_t vga_entry_color(enum vga_color fg, enum vga_color bg)
{
return fg | bg << 4;
}
static inline uint16_t vga_entry(unsigned char uc, uint8_t color)
{
return (uint16_t) uc | (uint16_t) color << 8;
}
size_t strlen(const char *str)
{
size_t len = 0;
while (str[len])
len++;
return len;
}
static const size_t VGA_WIDTH = 80;
static const size_t VGA_HEIGHT = 25;
size_t terminal_row;
size_t terminal_column;
uint8_t terminal_color;
uint16_t *terminal_buffer;
void terminal_initialize(void)
{
terminal_row = 0;
terminal_column = 0;
terminal_color = vga_entry_color(VGA_COLOR_LIGHT_GREY, VGA_COLOR_BLACK);
terminal_buffer = (uint16_t *) 0xB8000;
for (size_t y = 0; y < VGA_HEIGHT; y++)
{
for (size_t x = 0; x < VGA_WIDTH; x++)
{
const size_t index = y * VGA_WIDTH + x;
terminal_buffer[index] = vga_entry(' ', terminal_color);
}
}
}
void terminal_setcolor(uint8_t color)
{
terminal_color = color;
}
void terminal_putentryat(char c, uint8_t color, size_t x, size_t y)
{
const size_t index = y * VGA_WIDTH + x;
terminal_buffer[index] = vga_entry(c, color);
}
void terminal_putchar(char c)
{
terminal_putentryat(c, terminal_color, terminal_column, terminal_row);
if (++terminal_column == VGA_WIDTH)
{
terminal_column = 0;
if (++terminal_row == VGA_HEIGHT)
{
terminal_row--;
// Fixed at last row now
// Now we need to move from second line to end to the start
for (size_t y = 1; y < VGA_HEIGHT; y++)
{
for (size_t x = 0; x < VGA_WIDTH; x++)
{
const size_t src_index =
y * VGA_WIDTH + x;
char toCopy =
terminal_buffer[src_index];
terminal_putentryat(toCopy,
terminal_color,
x, y - 1);
}
}
for (size_t x = 0; x < VGA_WIDTH; x++)
{
terminal_putentryat(' ', terminal_color,
x, VGA_HEIGHT - 1);
}
}
}
// Write branding
uint8_t prevColor = terminal_color;
terminal_color =
vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_MAGENTA);
terminal_putentryat('M', terminal_color, VGA_WIDTH - 4, 0);
terminal_color = vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_CYAN);
terminal_putentryat('K', terminal_color, VGA_WIDTH - 3, 0);
terminal_color = vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_BLUE);
terminal_putentryat('O', terminal_color, VGA_WIDTH - 2, 0);
terminal_color =
vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_GREEN);
terminal_putentryat('S', terminal_color, VGA_WIDTH - 1, 0);
terminal_color = prevColor;
}
void terminal_newline()
{
for (size_t x = terminal_column; x < VGA_WIDTH; x++)
{
terminal_putchar(' ');
}
}
void terminal_write(const char *data, size_t size)
{
for (size_t i = 0; i < size; i++)
{
if (data[i] == '\n')
{
terminal_newline();
}
else
{
terminal_putchar(data[i]);
}
}
}
// Pad length is what number length should be, including padding
void terminal_writenumpad(const uint64_t number, int base, int pad_length)
{
char digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
int size = 0;
char numChars[32];
// TODO: Remove const and this
uint64_t numbero = number;
if (numbero == 0)
{
numChars[31] = '0';
size = 1;
}
else
{
while (numbero != 0)
{
uint64_t rest = numbero / base;
uint64_t digit = numbero % base;
numChars[31 - size++] = digits[digit];
numbero = rest;
}
}
// Write pad_length - size of zeros
// If padding won't be needed (number is longer than pad_legnth)
// then loop won't run at all
while (pad_length > size)
{
numChars[31 - size++] = digits[0];
}
terminal_write(numChars + (32 - size), size);
}
void terminal_writenum(uint64_t number, int base)
{
terminal_writenumpad(number, base, 0);
}
void terminal_writestring(const char *data)
{
terminal_write(data, strlen(data));
}
void terminal_writegreeting()
{
terminal_writestring(" .-'''-. \n");
terminal_writestring
(" ' _ \\ \n");
terminal_writestring
(" __ __ ___ . / /` '. \\ \n");
terminal_writestring
("| |/ `.' `. .'| . | \\ ' \n");
terminal_writestring("| .-. .-. ' .' | | ' | ' \n");
terminal_writestring
("| | | | | |< | \\ \\ / / \n");
terminal_writestring("| | | | | | | | ____`. ` ..' / _ \n");
terminal_writestring
("| | | | | | | | \\ .' '-...-'`.' | \n");
terminal_writestring("| | | | | | | |/ . . | / \n");
terminal_writestring
("|__| |__| |__| | /\\ \\ .'.'| |// \n");
terminal_writestring
(" | | \\ \\ .'.'.-' / \n");
terminal_writestring
(" ' \\ \\ \\ .' \\_.' \n");
terminal_writestring(" '------' '---' \n");
}
void print_texts()
{
terminal_writestring("TEGO NIE POWINNO BYC WIDAC\n");
terminal_writestring
("Witam i pozdrawiam, MK\nTest wielolinijkowosci\n");
for (size_t i = 0; i < VGA_HEIGHT - 3; i++)
{
for (size_t j = 0; j < i; j++)
{
terminal_writestring("*");
}
if (i != VGA_HEIGHT - 3)
terminal_writestring("\n");
}
terminal_newline();
terminal_writenum(123456789, 10);
terminal_newline();
terminal_writenum(189, 16);
terminal_newline();
terminal_writegreeting();
size_t start_point;
__asm__("mov $_start, %%eax": : :"eax");
__asm__("mov %%eax, %0;": "=r"(start_point):);
terminal_writestring("\n\nPoczatek kernela:\n");
terminal_writenum(start_point, 10);
terminal_newline();
size_t human_readable = start_point / (1024 * 1024);
terminal_writenum(human_readable, 10);
terminal_writestring(" MiB\n");
}