#pragma once #include #include #include #include "print.h" #define KERNEL_SEGMENT 0 #define USER_SEGMENT 1 #define CODE_SEGMENT 0 #define DATA_SEGMENT 1 struct gdt_entry { size_t base; size_t limit; bool is_present; int permission_level; int segment_type; bool is_executable; int direction_conforming; int readable_writable; bool was_accessed; int granularity; int segment_mode; bool is_long_mode; }; struct gdt_entry gdt_entry_create(size_t start_address, size_t pages_size, int kernel_or_user, int code_or_data) { struct gdt_entry new_entry; new_entry.base = start_address; new_entry.limit = pages_size - 1; new_entry.is_present = true; if (kernel_or_user == KERNEL_SEGMENT) { new_entry.permission_level = 0; } else { new_entry.permission_level = 3; } new_entry.segment_type = 1; new_entry.is_executable = (code_or_data == CODE_SEGMENT); new_entry.direction_conforming = 0; if (code_or_data == CODE_SEGMENT) { new_entry.readable_writable = 0; } else { new_entry.readable_writable = 1; } new_entry.was_accessed = false; new_entry.granularity = 1; new_entry.segment_mode = 1; new_entry.is_long_mode = false; return new_entry; } // BB F L AA BBBBBB LLLL // AA = P DPL(2) S E DC RW A // F = G DB L - uint64_t gdt_entry_encode(struct gdt_entry entry) { entry.base = entry.base << 12; uint64_t gdt_encoded = 0; // Insert base gdt_encoded |= ((((uint64_t) entry.base) & 0xFF000000) << 32); gdt_encoded |= ((((uint64_t) entry.base) & 0x00FFFFFF) << 16); // Insert limit gdt_encoded |= ((uint64_t) (entry.limit & 0xF0000) << 32); gdt_encoded |= (entry.limit & 0x0FFFF); // Prepare flags uint64_t flags = 0; flags |= (entry.granularity << 3); flags |= (entry.segment_mode << 2); flags |= (entry.is_long_mode << 1); // Insert flags gdt_encoded |= (flags << 52); // Prepare access byte uint64_t access_byte = 0; access_byte |= (entry.is_present << 7); access_byte |= (entry.permission_level << 5); access_byte |= (entry.segment_type << 4); access_byte |= (entry.is_executable << 3); access_byte |= (entry.direction_conforming << 2); access_byte |= (entry.readable_writable << 1); access_byte |= entry.was_accessed; // Insert access byte gdt_encoded |= (access_byte << 40); return gdt_encoded; } struct __attribute__((__packed__)) gdt_table { uint16_t size_in_bytes_m1; uint64_t *dest_pointer; struct gdt_entry entries[16]; }; void apply_gdt_table(struct gdt_table table) { // Null entry added implicitly uint64_t null_entry_encoded = 0; *table.dest_pointer = null_entry_encoded; int entries_count = (table.size_in_bytes_m1 + 1) / 8; for (int i = 0; i < entries_count; i++) { uint64_t entry_encoded = gdt_entry_encode(table.entries[i]); uint64_t *dest_address = table.dest_pointer + i + 1; *dest_address = entry_encoded; } __asm__("lgdt (%0)": :"r"(&table)); } void gdt_setup() { struct gdt_entry kernel_code_entry = gdt_entry_create(0x0, 0x100000, KERNEL_SEGMENT, CODE_SEGMENT); struct gdt_entry kernel_data_entry = gdt_entry_create(0x0, 0x100000, KERNEL_SEGMENT, DATA_SEGMENT); struct gdt_entry user_code_entry = gdt_entry_create(0x0, 0x100000, USER_SEGMENT, CODE_SEGMENT); struct gdt_entry user_data_entry = gdt_entry_create(0x0, 0x100000, USER_SEGMENT, DATA_SEGMENT); struct gdt_table gdt_table; gdt_table.size_in_bytes_m1 = 5 * 8 - 1; gdt_table.dest_pointer = (uint64_t *) 0x400000; gdt_table.entries[0] = kernel_code_entry; gdt_table.entries[1] = kernel_data_entry; gdt_table.entries[2] = user_code_entry; gdt_table.entries[3] = user_data_entry; apply_gdt_table(gdt_table); terminal_writestring("GDT table applied\n"); void (*gdt_setup_ptr)() = gdt_setup; terminal_writenumpad((uintptr_t)gdt_setup_ptr, 16, 16); __asm__ volatile ("mov $0x10, %ax;" "mov %ax, %ds;" "mov %ax, %es;" "mov %ax, %fs;" "mov %ax, %gs;" "mov %ax, %ss;" "jmp $0x08,$csrefresh;"); __asm__ volatile ("csrefresh:"); }