mirror of
https://github.com/WallyS02/Song-Lyrics-Generator.git
synced 2025-01-18 16:29:19 +00:00
Added rhymes in lyrics generation.
This commit is contained in:
parent
2a538004b3
commit
307c291862
8
main.py
8
main.py
@ -26,13 +26,15 @@ def generate_song(name):
|
|||||||
n_gram = int(input("Select number of words in Markov state: "))
|
n_gram = int(input("Select number of words in Markov state: "))
|
||||||
number_of_verses = int(input("Select number of verses: "))
|
number_of_verses = int(input("Select number of verses: "))
|
||||||
words_in_verses = int((int(input("Select number of words in verses: ")) - 1) / n_gram)
|
words_in_verses = int((int(input("Select number of words in verses: ")) - 1) / n_gram)
|
||||||
degree_of_chain = int(input("Select degree of chain: "))
|
# degree_of_chain = int(input("Select degree of chain: "))
|
||||||
model = create_markov_model(dataset, n_gram, degree_of_chain)
|
model = create_markov_model(dataset, n_gram)
|
||||||
print('\n')
|
print('\n')
|
||||||
last_state = random.choice(list(model.keys()))
|
last_state = random.choice(list(model.keys()))
|
||||||
|
rime = None
|
||||||
for i in range(number_of_verses):
|
for i in range(number_of_verses):
|
||||||
generated_lyrics, last_state = generate_lyrics(model, last_state, words_in_verses)
|
generated_lyrics, last_state = generate_lyrics(model, last_state, words_in_verses, True if i == 0 else False, rime)
|
||||||
print(generated_lyrics)
|
print(generated_lyrics)
|
||||||
|
rime = last_state
|
||||||
last_state = random.choices(list(model[last_state].keys()),
|
last_state = random.choices(list(model[last_state].keys()),
|
||||||
list(model[last_state].values()))[0]
|
list(model[last_state].values()))[0]
|
||||||
|
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
import random
|
import random
|
||||||
import re
|
import re
|
||||||
|
from nltk import SyllableTokenizer
|
||||||
from nltk.tokenize import word_tokenize
|
from nltk.tokenize import word_tokenize
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -29,7 +30,7 @@ def clean_data(name):
|
|||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
def create_markov_model(dataset, n_gram, n_step):
|
def create_markov_model(dataset, n_gram):
|
||||||
markov_model = {}
|
markov_model = {}
|
||||||
for i in range(len(dataset) - 1 - 2 * n_gram):
|
for i in range(len(dataset) - 1 - 2 * n_gram):
|
||||||
current_state, next_state = "", ""
|
current_state, next_state = "", ""
|
||||||
@ -73,13 +74,32 @@ def create_markov_model(dataset, n_gram, n_step):
|
|||||||
return markov_model
|
return markov_model
|
||||||
|
|
||||||
|
|
||||||
def generate_lyrics(markov_model, start, limit):
|
def generate_lyrics(markov_model, start, limit, isStartingVerse, rime):
|
||||||
n = 0
|
n = 0
|
||||||
current_state = start
|
current_state = start
|
||||||
lyrics = ""
|
lyrics = ""
|
||||||
lyrics += current_state + " "
|
lyrics += current_state + " "
|
||||||
lyrics = lyrics[0].upper() + lyrics[1:]
|
lyrics = lyrics[0].upper() + lyrics[1:]
|
||||||
while n < limit:
|
while n < limit:
|
||||||
|
if n == limit - 1 and not isStartingVerse:
|
||||||
|
rime = rime.split(" ")[-1]
|
||||||
|
tk = SyllableTokenizer()
|
||||||
|
rime_syllab = tk.tokenize(rime)[-1]
|
||||||
|
rime_states = {}
|
||||||
|
for state, probability in markov_model[current_state].items():
|
||||||
|
word = state.split(" ")[-1]
|
||||||
|
syllab = tk.tokenize(word)[-1]
|
||||||
|
if rime_syllab == syllab and rime != word:
|
||||||
|
rime_states.update({state: probability})
|
||||||
|
if rime_states:
|
||||||
|
next_state = random.choices(list(rime_states.keys()),
|
||||||
|
list(rime_states.values()))
|
||||||
|
current_state = next_state[0]
|
||||||
|
else:
|
||||||
|
next_state = random.choices(list(markov_model[current_state].keys()),
|
||||||
|
list(markov_model[current_state].values()))
|
||||||
|
current_state = next_state[0]
|
||||||
|
else:
|
||||||
next_state = random.choices(list(markov_model[current_state].keys()),
|
next_state = random.choices(list(markov_model[current_state].keys()),
|
||||||
list(markov_model[current_state].values()))
|
list(markov_model[current_state].values()))
|
||||||
current_state = next_state[0]
|
current_state = next_state[0]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user