Added saving and reading model from file plus improvements in dataset handling options.

This commit is contained in:
Sebastian Kutny 2023-04-18 15:03:00 +02:00
parent 5a341a1f1f
commit daafbb246e
5 changed files with 1481066 additions and 25 deletions

102740
Data/english_mixtape.csv Normal file

File diff suppressed because it is too large Load Diff

1378262
Data/somemix.csv Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

1
Models/somemix.json Normal file

File diff suppressed because one or more lines are too long

85
main.py
View File

@ -5,6 +5,7 @@ from scrapper import scrap_data
from markov_model import clean_data
from markov_model import create_markov_model
from markov_model import generate_lyrics
import json
blacksabbath_selected_albums = ["Black Sabbath", "Paranoid", "Master Of Reality", "Vol 4", "Sabbath Bloody Sabbath",
"Sabotage", "Technical Ecstasy", "Never Say Die!", "Heaven And Hell", "Mob Rules",
@ -18,15 +19,42 @@ pinkfloyd_selected_albums = ["The Piper At The Gates Of Dawn", "A Saucerful Of S
time_stamp = 3.5
path = os.path.dirname(os.path.abspath(__file__))
path = os.path.join(path, "Data")
pathData = os.path.join(path, "Data")
pathModels = os.path.join(path, "Models")
def generate_song(name):
dataset = clean_data(os.path.join(path, name))
def create_model():
filelist = []
for file in os.listdir(pathData):
if os.path.isfile(os.path.join(pathData, file)):
filelist.append(file)
i = 0
for file in filelist:
print(i, ": ", file)
i += 1
name = filelist[int(input("Select datafile: "))]
dataset = clean_data(os.path.join(pathData, name))
n_gram = int(input("Select number of words in Markov state: "))
number_of_verses = int(input("Select number of verses: "))
words_in_verses = int(input("Select number of words in verses: ")) - n_gram
model = create_markov_model(dataset, n_gram)
model_name = input("Select model name: ")
with open(os.path.join(pathModels, model_name) + '.json', 'w') as model_file:
model_file.write(json.dumps(model))
def generate_song():
filelist = []
for file in os.listdir(pathModels):
if os.path.isfile(os.path.join(pathModels, file)):
filelist.append(file)
i = 0
for file in filelist:
print(i, ": ", file)
i += 1
model_name = filelist[int(input("Select model: "))]
with open(os.path.join(pathModels, model_name), 'r') as model_file:
model = json.loads(model_file.read())
number_of_verses = int(input("Select number of verses: "))
words_in_verses = int(input("Select number of words in verses: ")) - len(list(model.keys())[0].split(' '))
print('\n')
rime = None
for i in range(number_of_verses):
@ -59,37 +87,46 @@ def scraping():
def merging():
name1 = input("Select first band file: ")
if os.path.exists(os.path.join(path, name1)):
df1 = pd.read_csv(os.path.join(path, name1))
df = pd.DataFrame(columns=['Title', 'Lyrics'])
print("Select files to merge: ")
filelist = []
for file in os.listdir(pathData):
if os.path.isfile(os.path.join(pathData, file)):
filelist.append(file)
while True:
i = 0
for file in filelist:
print(i, ": ", file)
i += 1
print(i, ": That's all")
option = int(input("Select option: "))
if option == i:
break
else:
print("No such file in directory!")
return
name2 = input("Select second band file: ")
if os.path.exists(os.path.join(path, name2)):
df2 = pd.read_csv(os.path.join(path, name2))
else:
print("No such file in directory!")
return
dfResult = pd.concat([df1, df2], ignore_index=True)
df1 = pd.read_csv(os.path.join(pathData, filelist[option]))
df = pd.concat([df, df1], ignore_index=True)
filelist.pop(option)
result_name = input("Select name of result file: ")
dfResult.to_csv(os.path.join(path, result_name))
df.to_csv(os.path.join(pathData, result_name))
def main():
print("Select data set to use in generation or other option:\n1. Generate text based on input filename\n2. Scrap "
"data\n3. Merge CSV band's songs\n4. Exit")
print("Select option:\n1. Create model based on datafile\n2. Generate lyrics with model.\n3. Scrap "
"data\n4. Merge CSV band's songs\n5. Exit")
while True:
selection = int(input())
match selection:
case 1:
name = input("Select name of data file: ")
generate_song(name)
create_model()
pass
case 2:
scraping()
generate_song()
pass
case 3:
merging()
scraping()
case 4:
merging()
case 5:
break
print("\nCommand executed")